

Chapitre II – Limites de fonctions

Bacomathiques — https://bacomathiqu.es

TABLE DES MATIÈRES	
I - Limite d'une fonction en un point	1
1. Limite infinie	1
2. Limite finie	3
3. Limites à gauche et à droite	4
4. Asymptote verticale	5
II - Limite d'une fonction en l'infini	6
1. Limite infinie	6
2. Limite finie	7
3. Asymptote horizontale	8
III - Calcul de limites	0
1. Limites de fonctions de référence	0
2. Opérations sur les limites	0
3. Comparaisons et encadrements	2

I - Limite d'une fonction en un point

1. Limite infinie

À RETENIR 💡

Fonction tendant vers $+\infty$ en un point

Soit f une fonction (en classe de Terminale, on se limite aux fonctions réelles) d'ensemble de définition \mathcal{D}_f . Soit a un réel appartenant à \mathcal{D}_f ou étant une borne de \mathcal{D}_f .

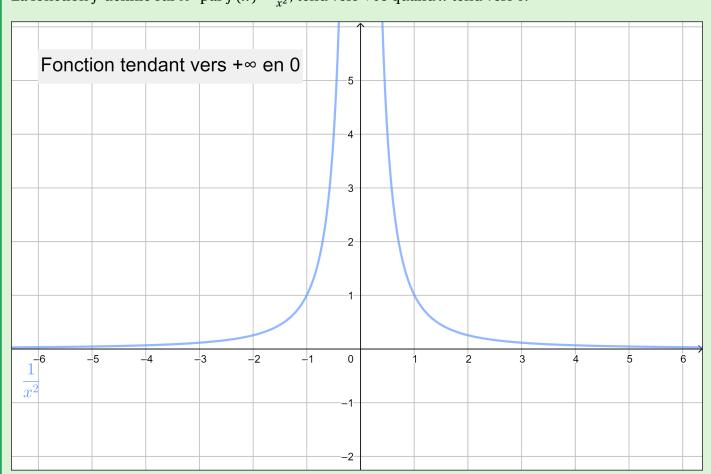
On dit que f(x) **tend vers** $+\infty$ quand x tend vers a si f(x) est aussi grand que l'on veut pourvu que x soit suffisamment proche de a.

On note ceci $\lim_{x \to a} f(x) = +\infty$.

À LIRE 👀

Exemple

La fonction f définie sur \mathbb{R}^* par $f(x) = \frac{1}{x^2}$, tend vers $+\infty$ quand x tend vers 0.



Il est tout à fait possible d'établir une définition similaire pour une fonction tendant vers $-\infty$ en un point.

À LIRE 00

Fonction tendant vers $-\infty$ en un point

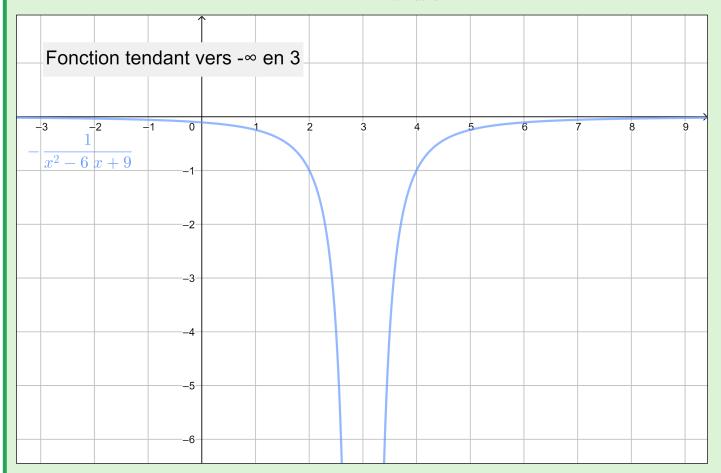
En reprenant les notations précédentes, on dit que f(x) tend vers $-\infty$ quand x tend vers a si f(x) est aussi petit que l'on veut pourvu que x suffisamment proche de a.

On note $\operatorname{ceci} \lim_{x \to a} f(x) = -\infty$.

À LIRE 👀

Exemple

La fonction f définie sur $]-\infty,3[\,\cup\,]3,+\infty[$ par $f(x)=-\frac{1}{x^2-6x+9}$, tend vers $-\infty$ quand x tend vers 3.



2. Limite finie

À RETENIR 🕴

Définition

Soit f une fonction d'ensemble de définition \mathcal{D}_f . Soit a un réel appartenant à \mathcal{D}_f ou étant une borne de \mathcal{D}_f .

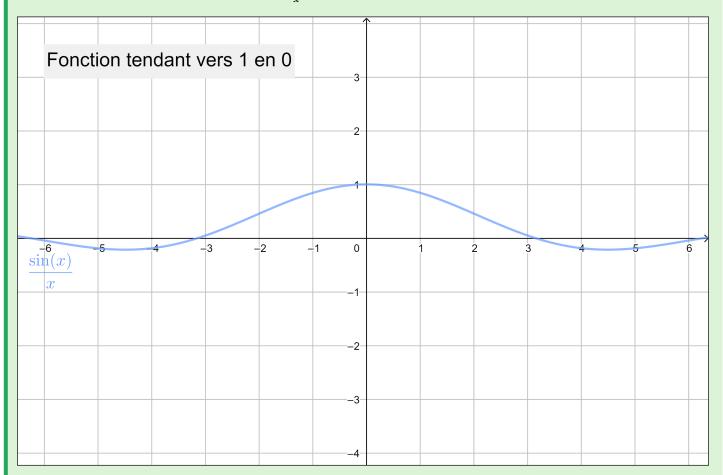
On dit que f(x) **tend vers** ℓ quand x tend vers a si f(x) est aussi proche de ℓ que l'on veut pourvu que x soit suffisamment proche de a.

On note ceci $\lim_{x \to a} f(x) = \ell$.

À LIRE 👓

Exemple

La fonction f définie sur \mathbb{R}^* par $f(x) = \frac{\sin(x)}{x}$, tend vers 1 quand x tend vers 0.



Une petite remarque cependant : cette limite n'est pas triviale à démontrer. On peut cependant en proposer une preuve à l'aide de la dérivée de la fonction sin (qui est cos) : $\lim_{x\to 0} \frac{\sin(x)}{x} = \lim_{x\to 0} \frac{\sin(x)-\sin(0)}{x-0} = \sin'(0) = \cos(0) = 1$.

3. Limites à gauche et à droite

À RETENIR 💡

Définition

Soit f une fonction d'ensemble de définition \mathcal{D}_f . Soit a un réel appartenant à \mathcal{D}_f ou étant une borne de \mathscr{D}_f .

- On dit que f(x) admet une **limite à gauche** quand x tend vers a si f(x) admet une limite quand x tend vers a avec x < a. On la note $\lim_{x \to a} f(x)$.
- On dit que f(x) admet une **limite à droite** quand x tend vers a si f(x) admet une limite quand x tend vers a avec x > a. On la note $\lim_{x \to a} f(x)$.

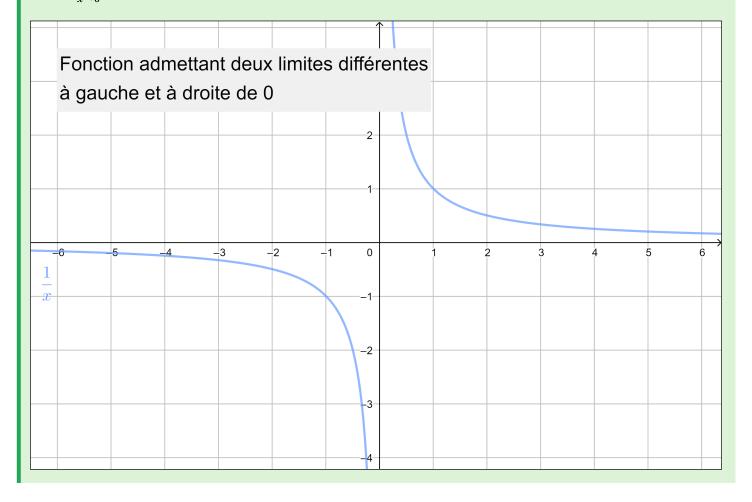
À LIRE 👀

Exemple

La fonction f définie sur \mathbb{R}^* par $f(x) = \frac{1}{x}$, admet deux limites différentes à gauche et à droite de 0 :

$$-\lim_{x\to a} h(x) = -\infty$$

$$-\lim_{x\to 0^{-}} h(x) = -\infty$$
$$-\lim_{x\to 0^{+}} h(x) = +\infty$$



4. Asymptote verticale

À RETENIR 🜹

Définition

Soit f une fonction d'ensemble de définition \mathcal{D}_f . Soit a un réel appartenant à \mathcal{D}_f ou étant une borne de \mathcal{D}_f .

Alors si f(x) admet une limite infinie quand x tend vers a, alors la droite d'équation x = a est une **asymptote verticale** à la courbe représentative de f.

À LIRE 🍑

Exemple

En reprenant les exemples précédents :

- Les courbes représentatives des fonctions $x \mapsto \frac{1}{x}$ et $x \mapsto \frac{1}{x^2}$ admettent toutes deux une asymptote verticale d'équation x = 0.
- La courbe de la fonction $x \mapsto \frac{1}{x^2 6x + 9}$ admet une asymptote verticale d'équation x = 3.

II - Limite d'une fonction en l'infini

1. Limite infinie

À RETENIR 🕴

Fonction tendant vers $+\infty$ en $+\infty$

Soit f une fonction d'ensemble de définition \mathcal{D}_f . On suppose qu'une des bornes de \mathcal{D}_f est $+\infty$.

On dit que f(x) tend vers $+\infty$ si f(x) est aussi grand que l'on veut pourvu que x soit suffisamment grand.

Comme précédemment, on peut écrire des définitions similaires pour dire que f tend vers $-\infty$ quand x tend vers $+\infty$.

À LIRE 👀

Fonction tendant vers $-\infty$ en $+\infty$

En reprenant les notations précédentes, on dit que f(x) tend vers $-\infty$ quand x tend vers $+\infty$ si f(x) est aussi petit que l'on veut pourvu que x soit suffisamment grand.

À LIRE 👀

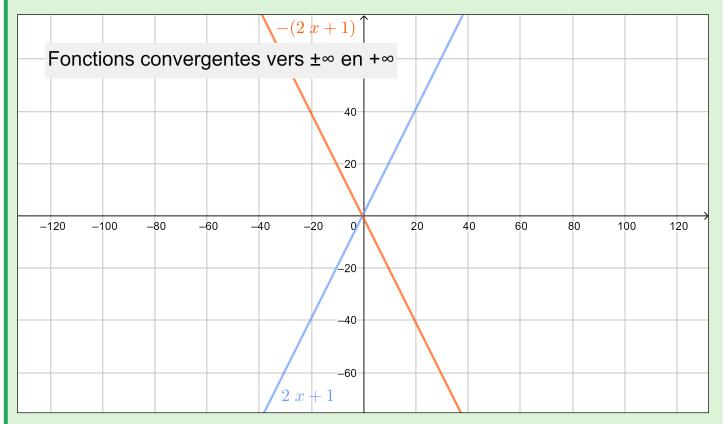
Fonction tendant vers $\pm \infty$ en $-\infty$

Pour avoir les définitions quand x tend vers $-\infty$, il suffit de remplacer "x suffisamment grand" par "x suffisamment petit" et il faut qu'une des bornes de \mathcal{D}_f soit $-\infty$.

À LIRE 👓

Exemple

La fonction f définie sur \mathbb{R} par f(x) = 2x + 1, tend vers $+\infty$ quand x tend vers $+\infty$. Cependant, la fonction $-f: x \mapsto -2x - 1$ tend vers $-\infty$ quand x tend vers $+\infty$.



2. Limite finie

À RETENIR 💡

Limite finie en $+\infty$

Soit f une fonction d'ensemble de définition \mathcal{D}_f . On suppose qu'une des bornes de \mathcal{D}_f est $+\infty$.

On dit que f(x) tend vers ℓ quand x tend vers $+\infty$ si f(x) est aussi proche de ℓ que l'on veut pourvu que x soit suffisamment grand.

De même, on peut écrire une définition semblable quand x tend vers $-\infty$.

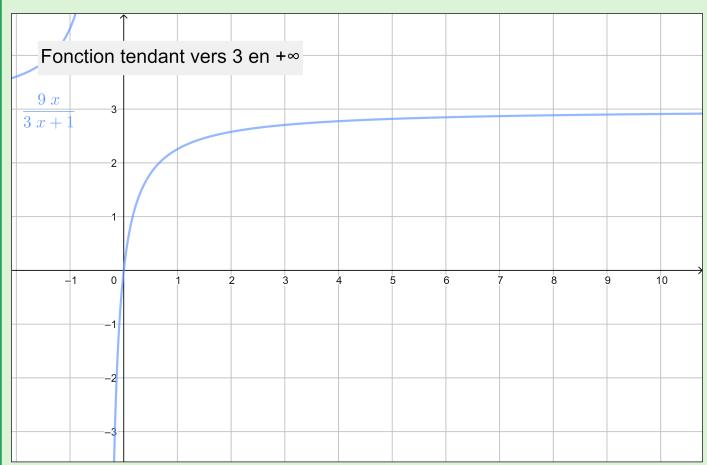
À LIRE 👓

Limite finie en $-\infty$

En reprenant les notations précédentes et en supposant qu'une des bornes de \mathcal{D}_f soit $-\infty$, on dit que f(x) **tend vers** ℓ quand x tend vers $-\infty$ si f(x) est aussi proche de ℓ que l'on veut pourvu que x soit suffisamment petit.

Exemple

La fonction f définie sur \mathbb{R}^+ par $f(x) = \frac{9x}{3x+1}$ tend vers 3 quand x tend vers $+\infty$.



3. Asymptote horizontale

À RETENIR 💡

Définition en $+\infty$

Soit f une fonction d'ensemble de définition \mathcal{D}_f . On suppose qu'une des bornes de \mathcal{D}_f est $+\infty$.

Alors si f(x) admet une limite finie ℓ quand x tend vers $+\infty$, alors la droite d'équation $y=\ell$ est une **asymptote horizontale** en $+\infty$ à la courbe représentative de f.

Comme tout ce que l'on a vu avant, il existe une définition semblable en $-\infty$.

À LIRE 00

Définition en $-\infty$

Soit f une fonction d'ensemble de définition \mathcal{D}_f . On suppose qu'une des bornes de \mathcal{D}_f est $-\infty$.

Alors si f(x) admet une limite finie ℓ quand x tend vers $-\infty$, alors la droite d'équation $y = \ell$ est une **asymptote horizontale** en $-\infty$ à la courbe représentative de f.

À LIRE 👓

Exemple

En reprenant l'exemple précédent, la courbe représentative de la fonction $x\mapsto \frac{9x}{3x+1}$ admet une asymptote horizontale d'équation y=3 en $+\infty$.

De plus, elle admet une asymptote verticale d'équation $x = -\frac{1}{3}$.

III - Calcul de limites

1. Limites de fonctions de référence

Nous allons donner quelques fonctions "classiques" avec leur limite en quelques points.

Limites de fonctions	usuelles		
	$a = -\infty$	a=0	$a = +\infty$
$\lim_{x \to a} \frac{1}{x}$	0	$-\infty \operatorname{si} a = 0^-, +\infty \operatorname{si} a = 0^+$	0
$\lim_{x \to a} \sqrt{x}$	Non définie	$0 \text{ si } a = 0^+$	+∞
$\lim_{x \to a} x^k$	$-\infty$ si k est impair, $+\infty$ si k est pair	0	+∞
$\lim_{x \to a} e^x$	0	$e^0 = 1$	+∞

À LIRE 👓

Rappel

On rappelle que 0^- signifie "tend vers 0 mais en restant inférieur à 0" et 0^+ signifie "tend vers 0 mais en restant supérieur à 0".

2. Opérations sur les limites

Dans tout ce qui suit, f et g sont deux fonctions de domaines de définition \mathcal{D}_f et \mathcal{D}_g . Soit a un nombre réel appartenant à $\mathcal{D}_f \cap \mathcal{D}_g$ (ou qui est au moins une borne des deux à la fois). Les tableaux suivants ressemblent beaucoup à ceux qui sont disponibles dans le cours sur les suites donc vous pouvez bien-sûr n'en retenir qu'un des deux, et tenter à partir de là de retrouver l'autre.

À RETENIR 💡

Limite d'une somme

Limite d'une somme						
Si la limite de $f(x)$ quand x tend vers a est	ℓ	ℓ	ℓ	+∞	$-\infty$	+∞
Et la limite de g quand x tend vers a est		+∞	$-\infty$	+∞	$-\infty$	$-\infty$
Alors la limite de $f + g$ quand x tend vers a est	$\ell + \ell'$	+∞	$-\infty$	+∞	$-\infty$?

À RETENIR 💡

Limite d'un produit

Limite d'un produit									
Si la limite de $f(x)$ quand x tend vers a est	ℓ	$\ell > 0$	$\ell > 0$	$\ell < 0$	$\ell < 0$	+&	+∞	$-\infty$	0
Et la limite de <i>g</i> quand <i>x</i> tend vers <i>a</i> est	ℓ'	+∞	$-\infty$	+∞	$-\infty$	+∞	$-\infty$	$-\infty$	±∞
Alors la limite de $f \times g$ quand x tend vers a est	$\ell \times \ell'$	+∞	$-\infty$	$-\infty$	+∞	+∞	$-\infty$	+∞	?

À RETENIR 💡

Limite d'un quotient

Limite d'un quotient									
Si la limite de $f(x)$ quand x tend vers a est	ℓ	ℓ	+∞	+∞	-∞	-∞	±∞	ℓ	0
Et la limite de g quand x tend vers a est	$\ell' \neq 0$	±∞	$\ell' > 0$	$\ell' < 0$	$\ell' > 0$	$\ell' < 0$	$\pm\infty$	0	0
Alors la limite de $\frac{f}{g}$ quand x tend vers a est	$\frac{\ell}{\ell'}$	0	+∞	-∞	-∞	+∞	?	±∞	?

À RETENIR 🦞

Limite d'une composée

Si on pose $\lim_{x \to a} f(x) = b$ et $\lim_{x \to b} g(x) = c$. Alors $\lim_{x \to a} (g \circ f)(x) = c$.

À LIRE 00

Formes indéterminées

À noter qu'il n'existe que 4 formes indéterminées : " $+\infty - \infty$ ", " $0 \times \pm \infty$ ", " $\frac{\pm \infty}{\pm \infty}$ " et " $\frac{0}{0}$ ".

3. Comparaisons et encadrements

À RETENIR

Théorèmes de comparaison

Soient deux fonctions f et g.

- Si $\lim_{x \to +\infty} f(x) = +\infty$ et si $f \le g$ à partir d'un certain point, alors $\lim_{x \to +\infty} g(x) = +\infty$.
- Si $\lim_{x \to +\infty}^{x \to +\infty} f(x) = -\infty$ et si $f \ge g$ à partir d'un certain point, alors $\lim_{x \to +\infty}^{x \to +\infty} g(x) = -\infty$.

À RETENIR \$

Théorème des gendarmes

Soient trois fonctions f, g et h. Si on a $f \le g \le h$ à partir d'un certain point, et qu'il existe ℓ tel que $\lim_{x \to +\infty} f(x) = \ell$ et $\lim_{x \to +\infty} h(x) = \ell$, alors $\lim_{x \to +\infty} g(x) = \ell$.

À LIRE 00

Exemple

Utilisons ce théorème pour montrer que la fonction $f: x \mapsto \frac{\sin(x)}{x}$ tend vers 0 quand x tend vers $+\infty$.

Tout d'abord, pour tout $x \in \mathbb{R}$, $-1 \le \sin(x) \le 1$.

Donc, pour tout x > 0, $\frac{-1}{x} \le \underbrace{\frac{\sin(x)}{x}}_{=f(x)} \le \frac{1}{x}$.

Comme, $\lim_{x \to +\infty} \frac{-1}{x} = 0$ et $\lim_{x \to +\infty} \frac{1}{x} = 0$, alors $\lim_{x \to +\infty} f(x) = 0$.

Le dernier théorème est la "version fonctions" du théorèmes des gendarmes (que l'on a vu lors du cours sur les suites). Ils permettent notamment de démontrer une partie du **théorème des croissances comparées**.

À RETENIR

Croissances comparées

Pour tout $n \in \mathbb{N}$:

$$\lim_{x \to +\infty} \frac{e^x}{x^n} = +\infty$$

DÉMONSTRATION @

Croissances comparées

Commençons tout d'abord par montrer que pour tout $x \ge 0$, $e^x \ge 1 + x$. Pour cela, posons $f : x \mapsto e^x - 1 - x$. On a pour tout $x \in \mathbb{R}$, $f'(x) = e^x - 1$. Donc f'(x) est positif si et seulement si $e^x - 1 \ge 0$, c'est-à-dire $e^x \ge 1$.

En regardant le graphique de la fonction exponentielle, on trouve que cela est équivalent à $x \ge 0$.

Notre fonction est donc croissante sur l'intervalle $[0, +\infty[$, et son minimum est donc atteint en x = 0 et vaut f(0) = 0. Ainsi, pour tout $x \ge 0$, $f(x) \ge 0 \iff e^x - 1 - x \ge 0 \iff e^x \ge 1 + x$: ce que l'on cherchait.

Pour conclure, on utilise une petite astuce. Soit $n \in \mathbb{N}$:

D'après ce que l'on vient de faire, pour tout x > 0, $e^{\frac{x}{n+1}} \ge 1 + \frac{x}{n+1} > \frac{x}{n+1}$. Ainsi, en mettant à la puissance n+1 (qui ne change pas le sens de l'inégalité car les deux membres sont positifs), on a :

$$e^x > (\frac{x}{n+1})^{n+1} = \frac{x^{n+1}}{(n+1)^{n+1}}$$

Maintenant, on divise les deux côtés par x^n (qui est un nombre strictement positif) et on obtient :

$$\frac{e^x}{x^n} > \frac{x}{(n+1)^{n+1}}$$

Or, le membre de droite tend vers $+\infty$ quand x tend vers $+\infty$ donc le membre de gauche aussi d'après les théorèmes de comparaison.