Fonctions polynômiales du second degré

Définition

Définition

Soit une fonction. est une fonction polynômiale du second degré si elle est de la forme avec , et réels qui sont les coefficients de .

Représentation graphique

Parabole

Soit une fonction polynômiale du second degré. Alors la courbe représentative de (notée ) est une parabole.

Chaque coefficient d’une fonction du second degré a un rôle dans le tracé de sa parabole.

Rôle des coefficients dans la représentation graphique

Soit de la forme (avec , et réels). Alors on a :

  • et contrôlent l’allure générale de la courbe (son orientation, son inclinaison, ...).

  • contrôle l’éloignement de la courbe par rapport à l’axe des abscisses.

Recherche de racines

Définition

Définition

Soient une fonction polynômiale du second degré et . On dit que est une racine de si .

Discriminant

Définition

Soit une fonction polynômiale du second degré de la forme (avec , et réels). On appelle discriminant de le réel suivant :

Propriétés

Plusieurs propriétés découlent du signe de :

  • Si alors n’admet pas de racine réelle.

  • Si alors admet une unique racine réelle : .

  • Si alors admet deux racines réelles : et .

Racines évidentes

Recherche des racines rationnelles

Soit une fonction polynômiale du second degré de la forme (avec , et réels). On note l’ensemble des diviseurs de et l’ensemble des diviseurs de . Alors :

Pour trouver une éventuelle racine rationnelle de , on calcule pour tout et , jusqu’à tomber sur .

Somme et produit de racines

Relations

Soit une fonction polynômiale du second degré de la forme (avec , et réels) admettant deux racines réelles et . Alors :

  • La somme des racines vaut également .

  • Le produit des racines vaut également .

Forme factorisée

Définition

Soit une fonction polynômiale du second degré de la forme (avec , et réels) admettant deux racines réelles et . Alors :

admet une forme factorisée qui vaut pour tout .

Une propriété découle immédiatement de cette méthode :

Propriété

Si , alors et sont racines.

Étude des fonctions polynômiales du second degré

Signe

Signe d’une fonction du second degré

Soit une fonction polynômiale du second degré de la forme (avec , et réels) admettant deux racines réelles et . On suppose ici que , alors :

  • Si : sur et sur .

  • Si : sur et sur .

Variations

Forme canonique

Soit une fonction polynômiale du second degré de la forme (avec , et réels), alors pour tout , on peut écrire de la forme : Avec et .

Cette forme est appelée forme canonique de et elle possède de nombreuses propriétés intéressantes.

Sommet de la parabole

Soit le sommet de la parabole . Alors les coordonnées de sont . Si , ce sommet est un maximum et si , ce sommet est un minimum.

Avec les remarques données précédemment, on peut en déduire les variations de la fonction .

Sens de variation

  • Si : est strictement croissante sur et est strictement décroissante sur .

  • Si : est strictement décroissante sur et est strictement croissante sur .

Axe de symétrie

Axe de symétrie

Soit une fonction polynômiale du second degré de la forme (avec , et réels). On note sa courbe représentative. Alors :

possède un axe de symétrie : la droite d’équation .