Probabilités conditionnelles

Définition

Définition

Soient et deux événements avec de probabilité non nulle. Alors la probabilité conditionnelle de sachant que est réalisé (notée ) est .

Rappel

On rappelle que .

Différence entre conditionnelle et intersection

Il faut faire attention, à bien faire la distinction entre une probabilité conditionnelle (Sachant qu’on a , quelle est la probabilité d’avoir ?) et une intersection (Quelle est la probabilité d’avoir et à la fois ?).

Indépendance

Deux événements et sont dits indépendants si la réalisation de l’un n’a aucune incidence sur la réalisation de l’autre et réciproquement. C’est-à-dire si .

Propriétés

Pour deux événements indépendants et , on a les relations suivantes :

Arbre de probabilité

Au lycée, pour représenter visuellement des probabilités on utilise très souvent un arbre de probabilité. Nous nous limiterons ici au cas de deux événements, mais il est possible d’en rajouter encore d’autres.

Ainsi :

Définition

Soient et deux événements. L’arbre de probabilité décrivant la situation est le suivant :

arbre-1

La somme (dans le sens vertical) des probabilités de chacune des branches ayant une racine commune doit toujours faire .

Exemple

Soit et deux événements non-indépendants tels que , et . Alors l’arbre permettant de modéliser la situation est le suivant :

arbre-2

Formule des probabilités totales

Voici maintenant l’énoncé de la formule des probabilités totales, qui peut être très utile pour calculer des probabilités que l’on ne connaît pas (ou qui ne sont pas données dans un énoncé d’exercice) :

Formule des probabilités totales

Soient des événements qui partitionnent (qui recouvrent) l’univers , alors pour tout événement :

Exemple

En reprenant l’arbre précédent, comme et recouvrent notre univers (en effet, soit on tombe sur , soit on tombe sur : pas d’autre issue possible), calculons :

arbre-2

D’après la formule des probabilités totales, .

Variables aléatoires

Définition

Définition

Une variable aléatoire est une fonction qui, à chaque événement élémentaire de l’univers y associe un nombre réel. C’est-à-dire : .

L’ensemble des valeurs prises par est noté .

Les variables aléatoires sont très utiles notamment pour modéliser des situations de gains ou de pertes (à un jeu d’argent par exemple).

Loi de probabilité

Définition

Soit une variable aléatoire. La loi de probabilité de attribue à chaque valeur la probabilité de l’événement constitué de tous les événements élémentaires dont l’image par est .

On représente généralement les lois de probabilité par un tableau.

Représentation d’une loi de probabilité par un tableau

Soit une variable aléatoire. On peut représenter sa loi de probabilité par le tableau ci-contre :

...
...

On a .

Cette définition peut sembler un peu compliquée mais elle signifie juste qu’une loi de probabilité assigne une probabilité à chaque valeur prise par notre variable aléatoire.

Espérance, variance et écart-type

Espérance

L’espérance d’une variable aléatoire est le réel :

Variance et écart-type

La variance et l’écart-type d’une variable aléatoire sont les réels positifs suivants :

Exemple

Calcul de l’espérance, de la variance et de l’écart-type. Soit une variable aléatoire suivant la loi de probabilité donnée par le tableau ci-dessous :

On a :

Chacun de ces paramètres a une utilité bien précise. En effet :

Signification des paramètres

  • L’espérance est la valeur moyenne prise par .

  • La variance et l’écart-type mesurent la dispersion des valeurs prises par . Plus ces valeurs sont grandes, plus les valeurs sont dispersées autour de l’espérance.

Vous avez aimé ce cours ?

Faîtes-le nous savoir dans les commentaires !

Avatar (prévisualisation)
Anonyme

Anonyme

merci beaucoup 🙏🏽👌👌🥰svp j’aimerais un peu d’explication sur les significations inclu inter car ça m’embrouilles et aussi au niveau du premier abre de la probabilité au niveau de la première branche on a trouvé 3/4comment🤲🏼

05/06/2024 05:33:26
Anonyme

Anonyme

merci beaucoup vos cours aident à mieux comprendre

16/12/2023 19:45:23
Anonyme

Anonyme

merci infiniment pour ces cours

05/08/2022 16:22:31
Anonyme

Anonyme

merci pour votre livre

28/05/2021 02:33:27
Skyost

Skyost Modérateur

Merci beaucoup pour votre commentaire ! Les exos ne sont pas encore disponibles, mais c'est quelque chose qui est très demandé et que j'ajouterai (dès que j'aurai du temps) 😉

10/09/2020 17:23:51
Anonyme

Anonyme

Bonjour, merci beaucoup pour votre cours clair et bien construit, aurait il des exo disponible sur cette application !?

10/09/2020 16:20:18
Anonyme

Anonyme

merci

24/06/2020 13:35:19